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Why imbalance ? 
 The types of look alikes are much more than that of oil spill. 



Why imbalance? 

 Requirments of automation. 

All targets extracted by segmentation algorithm must be processed by program. 
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Estimate target by background 
trends normalization

Estimate target again by back 
ground trends normalization with 
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Segmentation Adaptive threshold algorithm 

Adaptive threshold algorithm based on multi-scale background normalization  



Segmentation Adaptive threshold algorithm 
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Adaptive threshold algorithm based on multi-scale background normalization  



21 May, 2010      Envisat ASAR (C)  

13 Sept., 2011      Cosmo-SkyMed SAR (X) 



Satellite SAR Number Geo Correction Product 
Type 

Envisat /ASAR 138  No IMP, WSM 
ERS-1、2 / 
SAR 

63 No IMP/PRI 

C o s m o  S k y -
M E D / S A R 

135 Corrected
（Mercator Proj.）

WR, HI 

Total 336   

Data Source 

1.6 million targets are extracted from  336  SAR images 

100 
look-alikes oil spills 
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Why imbalance? 

 Requirments of automation. 

All targets extracted by segmentation algorithm must be processed by program. 
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Filter chain to reduce the number of look-alikes 

1 Solution 
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77 features are calculated for each 
dark target. 

The featres are collected from the 
literatures of oil spill detection and 
image processing. 

Feature Extrac.                          77 Features 

2 Solution 



The class labels of targets are 
assigned by an artificial intelligent 
iteratively trainning method. 
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complexity is reduced 2 Solution 



classes assigned by experts 
oil 

（Y=Yy+Yn） 
look-alike

（N=Ny+Nn） 

predict by 
classify 

oil（y=Yy+Ny） Yy Ny 

look-alikes（n=Yn+Nn） Yn Nn 

Detection Rate 
检测率 = Yy / (Yy + Yn) 

False Discovery Rate  (FDR) 
错检率 =Ny / (Yy+Ny) 

False Alarm Rate  (FAR) 
虚警率 = Ny / (Ny + Nn) 

Recognition Rate 
识别率 = (Yy + Nn) / (Yy + Ny + Yn + Nn) 

DROC FLEN 

Classification terms for classification performance 
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oversample the oil spill targets 
3 Solution 



AdaBoost MLP 77:70:15:2 

4 Solution 



det. Rt 
（%） 

False alarm 
（%） 

False Discovery 
（%） 

Accuracy 
（%） FLEN 

avg & 
stddev 80.8±0.5 5.0±0.1 19.8±0.4 92.1±0.1 0.276±0.003 

best FLEN 81.2 5.0 19.5 92.3 0.271 

4/1
, iiF Areaw =

Area weighted AdaBoost MLP (MLP-AA) 77:70:15:2 

Classification MLP-AA 
Classification 



Summary 

 High classification performance is achieved in a fully automatic SAR oil spill detection system. The 
techniques used in the system are explained in the point view of imblance problems. 

 Adaptive threshold based on multi-scale background normalization and its pre-processing  ensures the 
extracted dark areas cover all oil spills. The fiter chain with simple rules reduces the look-alikes 
dramatically and therefore  decrease the degree of imbalance between oil spills and look-alikes. 

 Class labels are assigned by an artificial intelligent iteritivly training method, which makes the targets 
more easy to seperate therefore reduce the complexity of classification problem. 

 77 features are used for classification. They are most comprehensive feature set so far. 

 Adaboost two-hidden-layer MLP can significantly reduce  false discover rate (FDR) while keeping DR in 
high level. 

Discussion 

 For  2-hidden layer MLP. The oversample is not helpful to improve the classification pefermance.. 
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