Full Polarimetric Broad Band Scatterometry for Retrieval Soil Moisture **Content and Vegetation Properties over a Tibetan Meadow**

Jan Hofste, Rogier van der Velde, Xin Wang, Donghai Zheng, Jun Wen, Christiaan van der Tol, and Zhongbo Su. email: j.g.hofste@utwente.nl

[1] Introduction and objective:

Simultaneous remote sensing in microwave- and optical regime allows for studying vegetation and soil moisture interaction. Combined setup of microwave (active & passive) and optical sensors to be installed at Alpine meadow site near Maqu (China). Site part of regional scale soil moisture monitoring network [1]. L-band radiometer; ELBARA [2] and scatterometer now present.

[5] Calculation backscatter coefficient σ^0 :

 σ^0 assumed isotropic. Antenna gain patterns $G(\alpha, \beta)$ and varying ranges R accounted for. Scatterometer calibrated with rectangular plate and dihedral reflector (see supplemental material).

This poster: Show latest progress of scatterometer installed August 2017.

Graph shows values Integrand G^2/R^4 over ground surface for 5 GHz. Marker (0,0) is position tower, boresight line hits ground at (0,7.1)

15

[2] Methodology scatterometer remote sensing:

- Measure backscatter coefficient σ^0 for four polarization channels (vv, hv, vh, and hh) over broad frequency range (1 - 10 GHz).
- Fixed antennas. Measure every hour over whole year.
- Hydrometeorological measurements simultaneously

[3] Theory:

Magnitude Backscattered waves proportional to dielectric constant soil surface ε_{eff} . Mixture model [3] shows ε_{eff} function of water content m_v and temperature T.

[6] Results:

Below: σ^0 for hh polarization during August. Variations over frequency caused by variable ε_{eff} soil, soil roughness, fading, and (possibly) vegetation. Variations over time due to change of ε_{eff} soil. Note jump in σ^0 for all frequencies on Aug. 19th 20:41. Behaviour vv polarization similar.

[4] Equipment:

Vector Network Analyser (VNA) + 2 dual polarization broadband antennas

- 0.75 10.25 GHz
- 3 MHz resolution
- VV, HV, VH, HH channels

ГС

UNIVERSITY

OF TWENTE.

Below: Cross sections at frequencies indicated with dashed lines above. Bottom graph shows m_v and T_{soil} at 5 cm depth. Arrows indicate rain events (see supplemental material).

Next steps:

- Modelling to retrieve m_v from σ^0 quantitatively
- Further measurements to investigate influence vegetation
- Optical spectroscopy measurements (including sun-induced chlorophyll fluorescence).

[1] Su Z., Wen J., et al., 2011, Hydr. and Earth Syst. Sc. [2] Zheng D., Wang X., et al., 2017, IEEE Trans. on Geo-Sc. and Rem. Sens. [3] Dobson M.C., Ulaby F.T., et al. 1985, IEEE Trans. on Geo-Sc. And Rem. Sens. σ^0 increases for all frequencies on Aug. 19th 20:41 due to heavy rainfall event Most frequencies show slow decay σ^0 from Aug. 11th due to drying soil Diurnal variation of m_v and T_{soil} also visible in σ^0 . With some frequencies σ^0 seems to follow m_v (see 3.504, 6.760 GHz), while others seem to follow T_{soil} (9.408 GHz).