

Generic Atmospheric Correction Online Service for InSAR (GACOS)

Chen Yu⁽¹⁾, Zhenhong Li ⁽¹⁾, Nigel Penna⁽¹⁾, Paola Crippa^(1,2)

(1) COMET, School of Engineering, Newcastle University, UK(2) College of Engineering, University of Notre Dame, Notre Dame, IN, USA

(Emails: C.Yu3@newcastle.ac.uk)

Motivation – Why atmospheric correction ?

- Spatio-temporal variations in T, P and water vapour result in tropospheric effects on InSAR observations.
- Surface displacements caused by tectonic/volcanic activities can be masked by tropospheric effects!
- Impacts on time series analysis

$$\phi_{ifg} = [\phi_{defo} + \phi_{tropo} + \phi_{iono} + \phi_{dem} + \phi_{base} + \phi_{noise}]_{2\pi}$$

Quantifying and mitigating tropospheric effects is vital for InSAR!

	GNSS	HRES-ECMWF analysis	ERA-Interim reanalysis	ERA-5 reanalysis*	MODIS
Horizontal	10 - 200 km, discrete	9~12 km, regular grid	~75 km, regular grid	~31 km	~ 1 km
Vertical	1	137 levels	61 levels	137 levels	1
Temporal	5 Minutes	00,06,12,18 UTC	00,06,12,18 UTC	Hourly (2010-	Daily
				2016, other data	
				to be released	
				soon)	
availability	Near real-time	Near real-time	latency 3-4 months	Near real-time	latency 1-2 months
Limitation	Coverage	Temporal resolution	Temporal resolution	N/A	
			 Spatial resolution 		Clouds
			Latency		Temporal resolution

□ How do we best use of data?

• Assessment, Integration, Interpolation

□ How to evaluate the model performance?

- Main factors affecting atmospheric correction
- Performance indicator

□ How do we best implement the model?

• Availability, efficiency

Objective: Generic Atmospheric Correction Model

- Globally and at all times available
- In near real time
- Aimed for ~1 cm accuracy (250 by 250 km)
- With reliable quality control indicators

Methodology

- Stratified: Topography-dependent component
- Turbulent: Topography-independent component resulting from turbulent processes

$$\Delta L_{ij}^{k} = T(\mathbf{x}^{k}) + L_{0}e^{-\beta h^{k}} + \varepsilon$$

- Stratified: Topography-dependent component
- Turbulent: Topography-independent component resulting from turbulent processes

$$riangle L_{ij}^k = T(\mathbf{x}^k) + L_0 e^{-eta h^k} + arepsilon$$

Integration of GNSS and HRES-ECMWF

$$S = L_0 e^{-\beta h} \Longrightarrow \begin{cases} S_m^G = L_0 e^{-\beta h_m} \\ S_n^E = L_0 e^{-\beta h_n} \end{cases}, \quad P_S = \begin{bmatrix} P_G & 0 \\ 0 & P_E \end{bmatrix}$$

$$T_{u} = \sum_{i=1}^{n} w_{ui} T(\mathbf{x}_{i}), \ w_{ui} = \frac{p_{i} d_{ui}^{-2}}{\sum_{i=1}^{n} p_{i} d_{ui}^{-2}}$$

- Cross Interpolation weight determination.
- Automatic weighting strategy.
- The relative weighting between GNSS and HRES-ECMWF are controlled by the precision and station distribution of the GNSS network.

GACOS (Version 1.5)

Generic Atmospheric Correction Online Service for InSAR (GACOS)

Daily First time visitors B9 Over 12 thousand jobs Over 12 thousand jobs October November December January February March

Popular Study Areas

Model Evaluation - Data Quality

Motivation & Objective
 •
 •
 Image: Method Performance Conclusion Indicator

Model Evaluation - California

The topography related atmosphere errors in the east and west ** mountain areas are significantly mitigated.

| Performance 🖕

The residuals in central area were most likely related to un-** modelled tropospheric turbulence.

Newcastle

University

Motivation & Objective • • • | Method •

-4

0

Differences (cm)

8

4

RMS GE = 0.72 cm

15

<u>~</u>8

Indicator

Model Evaluation - China

Model Evaluation - Co-Seismic

Newcastle University

Motivation & Objective • • • | Method • • • • • Performance • • • • • • | Indicator • | Conclusion •

Model Evaluation - Volcano

Weather models show @Agung InSAR fringes are atmospheric NOT deformation. Thanks @falbino @GACOS_Newcastle @USGSVolcanoes @NERC_COMET.

11:08 AM - 26 Sep 2017

Agung example 2. Also mostly atmosphere NOT deformation. We're investigating the slight underestimate.@FabienAlbino @GACOS_Newcastle.

Significant elevation dependent signal around volcano.

Performance Matrix (Indicators)

- Cross RMS
- Correlation coefficients
- ECMWF time difference
- Topography variation
- o Extreme weather

Model performance decreases as Cross

RMS increases.

Conclusions

- Generic Atmospheric Correction Online Service for InSAR (GACOS) is free for the InSAR research community: (<u>http://ceg-research.ncl.ac.uk/v2/gacos/</u>).
- Our GPS/HRES-ECMWF integrated model can achieve over 50% improvement with RMS < 1 cm for InSAR displacements over a 250x250 km region, which can be applied globally and at all times, in near real time.

For a interferogram extending 250 by 250 km =>

Motivation & Objective • • • | Method • • • • • | Performance • • • • • • | Indicator • | Conclusion