Generic Atmospheric Correction Online Service for InSAR (GACOS)

Chen Yu(1), Zhenhong Li (1), Nigel Penna(1), Paola Crippa(1,2)

(1) COMET, School of Engineering, Newcastle University, UK
(2) College of Engineering, University of Notre Dame, Notre Dame, IN, USA

(Emails: C.Yu3@newcastle.ac.uk)
Motivation – Why atmospheric correction?

- Spatio-temporal variations in T, P and water vapour result in tropospheric effects on InSAR observations.
- Surface displacements caused by tectonic/volcanic activities can be masked by tropospheric effects!
- Impacts on time series analysis

\[\phi_{bg} = [\phi_{defo} + \phi_{tropo} + \phi_{ono} + \phi_{dem} + \phi_{base} + \phi_{noise}]_{2\pi} \]

Quantifying and mitigating tropospheric effects is vital for InSAR!
Motivation - Data

<table>
<thead>
<tr>
<th></th>
<th>GNSS</th>
<th>HRES-ECMWF analysis</th>
<th>ERA-Interim reanalysis</th>
<th>ERA-5 reanalysis*</th>
<th>MODIS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horizontal 10 - 200 km, discrete</td>
<td>912 km, regular grid</td>
<td>~75 km, regular grid</td>
<td>~31 km</td>
<td>~ 1 km</td>
</tr>
<tr>
<td>Vertical</td>
<td>1</td>
<td>137 levels</td>
<td>61 levels</td>
<td>137 levels</td>
<td>1</td>
</tr>
<tr>
<td>Temporal</td>
<td>5 Minutes</td>
<td>00,06,12,18 UTC</td>
<td>00,06,12,18 UTC</td>
<td>Hourly (2010-2016, other data to be released soon)</td>
<td>Daily</td>
</tr>
<tr>
<td>availability</td>
<td>Near real-time</td>
<td>Near real-time</td>
<td>latency 3-4 months</td>
<td>Near real-time</td>
<td>latency 1-2 months</td>
</tr>
<tr>
<td>Limitation</td>
<td>Coverage</td>
<td>Temporal resolution</td>
<td>• Temporal resolution</td>
<td></td>
<td>Clouids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Spatial resolution</td>
<td></td>
<td>Temporal resolution</td>
</tr>
</tbody>
</table>
Key Questions & Objective

- **How do we best use of data?**
 - Assessment, Integration, Interpolation

- **How to evaluate the model performance?**
 - Main factors affecting atmospheric correction
 - Performance indicator

- **How do we best implement the model?**
 - Availability, efficiency

Objective: Generic Atmospheric Correction Model

- Globally and at all times available
- In near real time
- Aimed for ~1 cm accuracy (250 by 250 km)
- With reliable quality control indicators
Tropospheric delay = Hydrostatic delay + wet delay

Tropospheric delay = Stratified delay + turbulence delay

(a) Stratified delay by GPS + ECMWF
(b) Turbulent delay by GPS + ECMWF
(c) Total delay by GPS + ECMWF

(d) Raw IFG1–UK
(e) IFG after correction
Stratified: Topography-dependent component

Turbulent: Topography-independent component resulting from turbulent processes

\[\Delta L_{ij}^k = T(x^k) + L_0 e^{-\beta h^k} + \epsilon \]

Iterative tropospheric decomposition

(Yu et al., 2017, JGR)

Significant improvement after separating stratified and turbulence component
Iterative tropospheric decomposition

\[\Delta L_{ij}^k = T(x^k) + L_0 e^{-\beta h^k} + \epsilon \]

- **Stratified**: Topography-dependent component
- **Turbulent**: Topography-independent component resulting from turbulent processes

More improvements in strong turbulence seasons

Methodology

- **Stratified**: Topography-dependent component
- **Turbulent**: Topography-independent component resulting from turbulent processes

(Yu et al., 2017, JGR)
Cross Interpolation weight determination.

Automatic weighting strategy.

The relative weighting between GNSS and HRES-ECMWF are controlled by the precision and station distribution of the GNSS network.
GACOS (Version 1.5)

Daily First time visitors
Over 12 thousand jobs

Popular Study Areas
Model Evaluation - Data Quality

~1cm ZTD RMS (GPS vs HRES ECMWF)

~1.5mm PWV RMS (MODIS vs GPS)

~2mm PWV RMS (MODIS vs HRES ECMWF)

Motivation & Objective

<table>
<thead>
<tr>
<th>Method</th>
<th>Performance</th>
<th>Indicator</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Newcastle University
❖ The topography related atmosphere errors in the east and west mountain areas are significantly mitigated.
❖ The residuals in central area were most likely related to un-modelled tropospheric turbulence.
Northern Tibet:
- Raw IFGs
 - STD=1.15mm
- ZTD maps
- Corrected IFGs
 - STD=0.45mm

Landslide:
- Raw IFGs
- ZTD maps
- Corrected IFGs
 - STD=0.45mm

250 km
8 km

Motivation & Objective
Method
Performance
Indicator
Conclusion
Identify Small Co-Seismic Signal

Raw IFGs | GACOS Map | After Correction

Feng, et al., 2018
Model Evaluation - Post-Seismic

<table>
<thead>
<tr>
<th>Motivation & Objective</th>
<th>Method</th>
<th>Performance</th>
<th>Indicator</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Before | After | Before | After | Before | After |

![Images showing before and after comparisons](image1.png)

![Images showing before and after comparisons](image2.png)

![Images showing before and after comparisons](image3.png)
Weather models show @Agung InSAR fringes are atmospheric NOT deformation. Thanks @falbino @GACOS_Newcastle @USGSVolcanoes @NERC_COMET.

Agung example 2. Also mostly atmosphere NOT deformation. We're investigating the slight underestimate.@FabienAlbino @GACOS_Newcastle.

Significant elevation dependent signal around volcano.
Performance Matrix (Indicators)

- Cross RMS
- Correlation coefficients
- ECMWF time difference
- Topography variation
- Extreme weather

Model performance decreases as Cross RMS increases.

(Yu et al., 2018, RSE)
Conclusions

- Generic Atmospheric Correction Online Service for InSAR (GACOS) is free for the InSAR research community: (http://ceg-research.ncl.ac.uk/v2/gacos/).

- Our GPS/HRES-ECMWF integrated model can achieve over 50% improvement with RMS < 1 cm for InSAR displacements over a 250x250 km region, which can be applied globally and at all times, in near real time.

- Indicators such as correlation analysis, cross test and time differences have been developed to assess model performances, which can inform users when and where atmospheric correction is feasible.

- For an interferogram extending 250 by 250 km =>

 - Total delays ~2 meter
 - Spatio-temporally differenced 5 - 20 cm
 - After GACOS ~1 cm
 - Time series constrain/filtering mm level