esa - most china dragon cooperation 2018 dragon 4 mid-term results symposium

Preliminary experimental study on the detection of internal solitary wave by optical remote sensing Yuan Mei, Jing Wang* Department of Physics, Ocean University of China, Qingdao 266100, P.R.China Email: wjing@ouc.edu.cn

Introduction

Optical remote sensing is one of the most important methods for large-scale observation of ocean internal solitary wave (ISW), which has the advantages of wide width and high temporal resolution. However, the optical remote sensing image is affected by cloud, sea condition and imaging angle, which brings difficulty to extract and retrieve ocean internal wave information from the optical remote sensing image. Currently, parameter

inversion of internal solitary wave on optical remote sensing image is still based on the inversion model of SAR image. Therefore, a new approach is

proposed to establish an experimental system of optical remote sensing to detect internal solitary wave in the laboratory, which aims to explore the

response characteristics of optical remote sensing images caused by internal solitary waves.

Experimental Setup

Fig. 1 The schematic diagram and raw photograph of experimental system

- three-dimensional ISW flume: $300 \times 15 \times 30$ cm

Results

The propagation of ISW has been obviously observed on the images

- CCD camera: 1920×1080 pixels, 50Hz
- LED : DC parallel surface light source, 55W

Methods

Fig. 2 Different amplitudes are generated by different collapse heights

Fig. 3 The schematic diagram of linear time series sampling line

derived from both CCD cameras.

Table 1 Characteristic parameters of ISW

Parameters	No.1 ISW	No.2 ISW	No.3 ISW	No.4 ISW
A(cm)	37.65	32.35	27.35	21.76
L(cm)	22.78	27.71	29.56	29.97
D(cm)	53.78	54.19	62.81	66.50

	ampilique of the internal somary wave.							
The response of the optical remote sensing image corresponds to the vertical	Table 2 Δ gray-A under different stratification							
displacement of the internal solitary wave. The linear time series sampling	Stratfication	3.21	3.17	5.17	7.17			
method is adopted to data processing with different conditions, including		J.21	J.17	J.17	/.1/			
collapse height and stratification.	Slope	1.90	1.21	1.17	0.32			
Conclusion								
The characteristic parameters of optical remote sensing images correspond to the wave factors of vertical profiles. The amplitude is proportional to								
the collapse height in a certain range. When the thickness of the lower layer is the same and the upper layer increases, the positive correlation								
coefficient decreases. The research provides a useful reference for quantitative inversion of ISW parameters on optical remote sensing image.								
Acknowledge								
This work is support by the National Key R&D Program of China under contract No. 2017YFC1405600.								

Presented in Dragon 4 Mid-term Results Symposium, 19-22 June 2018 Xi'an, P.R. China