

SIGNIFICANT WAVE HEIGHT RETRIEVAL USING SENTINEL-1 SAR IMAGERY:

Semi-empirical Investigation on Open Ocean Radar-look Directional Wave

Fabian S. Pramudya, Jiayi Pan, Adam T. Devlin The Chinese University of Hong Kong

Objectives

Research Objective

- 1. Evaluating semi-empirical update of significant wave height (Hs) estimation applied to Sentinel-1 SAR repository for narrow-band swell-wave spectrum on the open-ocean waters **without prior knowledge or external inputs.**
- 2. Evaluate the dependency between *Hs* and local environment (wind forcing, wave type, SAR system limitation, and imaging mechanism)

New Approach of a Complimentary Work:

- 1. Updating the surface roughness and slope variation parameters derived from vertical polarization in a 5.405 GHz SAR system
- 2. Applying necessary digital filtering method for better peak of dominant wavelength identification in the frequency domain of 2D-Fast Fourier Transform
- 3. Evaluating the limitation and effects of varying wind speed and dominant wave type related to the nature of inear algorithm

SAR Capturing the Wave

Radar system imaging ocean surface terminology (*upper left*), and Backscattered signal from moving ocean surface (*lower*). Dominated by Bragg scattering from capillary waves and short gravity waves, the composed waves in turn are modulated in their orientation, energy, and motion **by longer waves** on the bottom two images (Kim and Moon, 2003).

In the case of **swell**, the waves has strong space-time correlation and result in constructive velocity bunching. In **wind dominant sea**, however, the velocities are more random. The SAR processing usually becomes more destructive and apparent blurring (Swift and Wilson, 1979., Ardhuin, et al. 2015., Stopa, et al. 2015.)

Circular Orbits

A=B

Deepwater wave kd>N Diagrammatic representation of the motion of fluid particle beneath a wave as predicted by **linear wave theory** (Young, 1999 after CERC, 1984) (*upper*) and the formation of wave groups as a result of the superposition of two linear wave trains with different frequencies (Young, 1999 after Kinsman 1965) (*bottom*)

Area and Data

Area of Interest : Hawaii Waters (Oct 2016 – December 2017)

Offshore NDBC Buoys NDBC 51000, 51002, 51004

Available Data : 143 scenes (69 scenes selected for radar-look directional wave)

Data Example on NDBC Station 51004, HI

NDBC STATION 51004	DATE	TIME	#YY	ММ	DD	hh	mm	WDIR	WSPD	GST	WVHT	DPD	APD	MWD	PRES	ATMP	WTMP	DEWP	VIS	TIDE
			#yr	mo	dy	hr	mn	degT	m/s	m/s	m	sec	sec	deg	hPa	degC	degC	degC	nmi	ft
S1A_IW_GRDH_1SDV_20161010T	10/10/2016	4:21:50	2016	10	10	3	50	42	7	8.1	2.01	14.8	6.62	351	1011.9	26.6	27	999	99	99
			2016	10	10	4	50	45	7.8	9.1	1.93	14.8	6.57	333	1012.4	26.7	27	999	99	99
S1A_IW_GRDH_1SDV_20161022T	22/10/2016	4:21:50	2016	10	22	3	50	53	10.9	13.2	2.83	12.1	6.5	341	1012.7	27	26.8	999	99	99
			2016	10	22	4	50	54	10.9	13.1	2.89	8.33	6.47	90	1013	26.9	26.8	999	99	99

Contents are taken from: http://ndbc.noaa.gov/

National Oceanic and Atmospheric Administration's National Data Buoy Center Center of Excellence in Marine Technology

Flowchart

(*) Statistical assessment (outlier removal/ filtering/ linear regression) Accuracy accepted or not

Algorithm & Method

For a narrow-band swell-wave spectrum centered on wave number Ko, the r.m.s slope of the sea surface, tan Θ r, is given (Thomas, 1982)

$$\frac{\tan \Theta r}{Hs} = \frac{|Ko|}{4} = \frac{\pi}{2\lambda o}$$

Using the equation above, if we know tan θ r and λo , it is straight forward to determine λo by taking the 2 dimensional Fast Fourier Transform (2D-FFT) from a digital image. On the other hand, the determination of tan θ r is based on the variation of the backscattering cross-section of the sea surface with incident angle (Valenzuela, 1978). Where θ is angle of the sea surface slope, and very small relative to the wavelength, we could rewrite those equation as follows:

$$\frac{\sqrt{\langle \theta^2 \rangle}}{H_S} = \frac{\pi}{2\lambda_0}$$

Below are several points need to be noted, to obtain the r.m.s. slope of the sea surface

- 1. Normalized Radar cross-section of sea surface changes with incidence angle [$\sigma_0 = \sigma_0(\Theta)$]
- 2. where Θ represents the SAR wave incidence angle, the NRCS (σ_0) will change within the various Θ
- 3. Because of the tilt modulation, there is a small incidence angle change due to the sea surface slope relative to the mean surface. This, if the sea surface slope angle is Θ , the incidence angle for the tilted sea surface is $\left[\Theta = \Theta_0 \theta\right]$

$$\sqrt{\langle \theta^2 \rangle} = \sqrt{\langle [\sigma_0(\Theta_0 - \theta) - \sigma(\Theta_0)]^2 \rangle} / \frac{d\sigma_0}{d\Theta} \bigg|_{\Theta = \Theta_0}$$

where $\sqrt{\langle [\sigma_0(\Theta_0 - \theta) - \sigma(\Theta_0)]^2 \rangle}$ is the standard deviation of σ_0 , denoted as std(σ_0). Therefore, we have equation below explaining the r.m.s slope of the sea surface as seen in the original equation

$$\sqrt{\langle \theta^2 \rangle} = \operatorname{std}(\sigma_0) / \frac{d\sigma_0}{d\Theta} \Big|_{\Theta = \Theta_0}$$

These parameters gives us the simple empirical-physical properties of swell-waves happens, assuming that the wavelength are constant and linearly distributed over a subset of image. Thus, this equation is not suitable for understanding phenomena such as internal waves and very low to extreme sea state condition. Those boundaries of application will be explained later.

Result

Two subset are taken from each scene:

- 1. 1000 pixels rectangular subset for empirical standard deviation
- 2. 1000 pixels width for the entire length of the image for consistent ocean surface slope

Result from 69 scenes plot below :

- 1. The standard deviation (dB) grows stronger with >> Hs
- 2. The slope (dB/ radians) is relatively steeper with >> Hs

Result

2-Dimentional Fast Fourier Transform (2-D FFT) Wave Spectra Analysis

5x5 pixels parameterized median filter is applied to the radar cross section based on it's effectivity to enhanced the dominant wavelength peak, while 2D Gaussian filter is applied on the frequency domain to reduces the low frequency noise in the middle of the wave spectra.

0.8

0.2

700

600

500

400

300

200

100

Result from 69 scenes plot below : The wavelength (m) grows stronger with higher Hs.

Some of the result fails this common pattern due to the high wind speed (> 10 ms^{-1}) or wind wave dominant sea.

Estimated Hs Result

We found 0.3717m overestimation compared to the buoy data and applied the linear regression

Figure above shows the different between high 10m above sea level wind (>10ms⁻¹) condition (*left*) with low to medium wind speed (*right*) before the linear regression applied

Figure above shows the different between swell dominant sea (*left*), and wind dominant sea (*right*) before the linear regression applied

Estimated Hs Result NBDC51000

51000 BUOY	STD	SLOPE	WVDI	WLGTH	Hs	Corr. Hs	WDIR	WSPD	BUOY HS	MWD	Δ Hs		
20161022T042324	0.82564	16.86361	87.510	5 144.92754	2.258609	2.85446949	69	10.25	2.83	196.5	0.024469		
20161127T042324	0.853307	12.54231	92.960	4 172.41379	2.349041	2.95394481	85.5	11.45	3.155	95.5	0.201055		
20161221T042323	0.914858	10.70636	98.930	9 142.85714	2.086743	2.6654168	86.5	8.2	2.885	336	0.219583		
20170303T042320	1.017392	18.58472	93.366	6 117.64706	2.050044	2.6250486	110	12.4	3.28	88.5	0.654951		
20170514T042323	0.8224	17.35266	91.591	4 138.88889	2.095244	2.67476837	97.5	5.9	2.78	121.5	0.105232		
20170713T042326	0.766734	27.2433	88.768	2 107.52688	0.963279	1.42960658	53.5	5.05	1.58	355	0.150393		
20170725T042327	0.930302	27.80714	87.588	7 105.26316	1.120971	1.60306778	95.5	6.35	1.98	146	0.376932		
20171005T042330	0.806426	20.94887	92.337	1 102.04082	1.250339	1.74537295	66.5	6.55	2.135	124	0.389627		
20171017T042330	0.82886	15.52268	90.842	2 147.05882	1.946192	2.51081134	90	3.8	2.71	315.5	0.199189		
20171216T042329	0.970432	35.61468	92.973	3 129.87013	2.012276	2.58350401	20	3.6	3.155	319.5	0.571496		
20170426T042240	0.814942	13.01557	98.226	2 120.48193	1.567695	2.09446451	75.5	6.3	1.935	184.5	0.159465		
20170520T042241	0.796409	26.8995	89.390	9 106.38298	1.002569	1.4728262	107	7.35	1.45	37.5	0.022826		
20170601T042242	0.761406	23.51906	73.9	1 136.9863	1.411639	1.92280276	80.5	8.2	1.995	308	0.072197		
20170613T042243	0.809963	16.56542	88.191	6 105.26316	1.638285	2.17211305	84.5	10.2	1.99	63	0.182113		
20170707T042244	0.765188	22.37789	82.259	6 97.087379	1.056724	1.53239669	71	5.1	1.29	69.5	0.242397		
20170719T042245	0.757085	32.67595	67.815	9 97.087379	1.173601	1.6609616	86.5	5.5	1.73	48.5	0.069038	MAX	0.6549
20170731T042245	0.791729	26.70793	86.423	7 156.25	1.474371	1.99180764	55	5.65	1.48	132	0.511808	STD	0.1924
20170824T042247	0.826893	17.23459	88.172	3 106.38298	1.624691	2.15715999	80	8.65	2.125	76.5	0.03216	MEAN	0.2324

All Data

Red : Swell Blue: Wind Wave

Estimated Hs Result NBDC51004

51004 BUOY	STD	SLOPE	WVDIR	WLGTH	Hs	Corr. Hs	WDIR	WSPD	BUOY HS	MWD	Δ Hs		
20161022T042140_	0.874279	17.63204	91.90915	166.66667	2.630549	3.26360425	53.5	10.9	2.86	215.5	0.403604		
20161103T042140_	0.865824	26.6801	90.77422	135.13514	1.90089	2.46097924	61	8.2	2.545	84	0.084021		
20161115T042140_	0.860342	18.16416	97.12502	138.88889	1.941323	2.50545486	68.5	10.9	3.23	300.5	0.724545		
20161127T042140_	0.911781	12.02273	90.89517	156.25	2.314567	2.91602372	69	12.05	3.635	202	0.718976		
20161221T042139_	0.935029	17.27665	92.60256	151.51515	2.610188	3.24120675	56.5	10.25	3.22	92.5	0.021207		
20170102T042137_	0.859727	30.92877	101.5752	120.48193	1.682834	2.22111783	24	3.9	2.18	41	0.041118		
20170114T042137_	0.852763	11.95477	97.7336	123.45679	1.710419	2.25146141	86	9	2.155	219.5	0.096461		
20170303T042136_	0.824191	17.52745	90.07441	129.87013	1.943875	2.50826296	106	6.25	2.13	77	0.378263		
20170327T042137_	0.927765	18.466	97.59464	166.66667	2.665409	3.3019504	77	10	3.215	198	0.08695		
20170514T042139_	0.803137	16.84089	91.28733	112.35955	1.705629	2.24619159	72.5	8.65	2.27	49.5	0.023808		
20170725T042143_	0.772183	14.72319	91.28733	112.35955	1.875766	2.43334268	72.5	8.4	1.99	77.5	0.443343		
20170806T042144_	0.831062	21.88593	92.82712	123.45679	1.666892	2.2035817	61.5	9.55	2.285	87.5	0.081418		
20170911T042145_	0.772803	25.08942	94.00417	100	1.255533	1.75108595	64	6.9	1.87	101	0.118914		
20170426T042056_	0.84585	24.70967	90.74406	129.87013	1.784686	2.33315444	79	7.95	2.2	97.5	0.133154		
20170508T042056_	0.797363	16.08628	87.17288	123.45679	1.947896	2.5126858	101.5	8.35	2.175	57	0.337686		
20170520T042057_	0.800546	18.52198	89.32596	117.64706	1.618566	2.15042231	64.5	7.45	1.895	85.5	0.255422		
20170601T042058_	0.805121	15.24979	88.1817	158.73016	2.076251	2.65387633	66	9.75	2.6	107.5	0.053876		
20170719T042101_	0.765665	24.98263	90.52086	90.909091	1.13085	1.61393496	78	6.25	1.515	118	0.098935		
20170812T042102_	0.771141	21.10514	95.14276	100	1.163042	1.64934631	64	8.35	1.855	82	0.205654	NEDO	= 1004
20170824T042102_	0.796415	18.94568	95.14276	100	1.338071	1.84187827	60.5	9.05	2.32	92.5	0.478122	NDBC	51004
20171023T042104_	0.805779	18.83365	95.19443	113.63636	1.547565	2.07232189	82	7.15	2.54	101.5	0.467678	MAX	1.070621
20171116T042104_	0.779714	25.38383	90.7639	133.33333	1.689015	2.22791613	46	8.7	2.355	30.5	0.127084	STD	0.273382
20171128T042104_	0.944	17.29433	90.97102	169.49153	2.599436	3.22937918	69	11.25	4.3	18	1.070621	MEAN	0.280472

Red : High Wind Blue: Low- Med Wind

Red : Swell Blue: Wind Wave

All Data

Estimated Hs Result NBDC51002

51002 BUOY	STD	SLOPE	WVDIR	WLGTH	Hs	Corr. Hs	WDIR	WSPD	BUOY HS	MWD	Δ Hs		
20161101T043802_	0.93716	15.76064	95.33216	133.33333	2.523646	3.14601088	63.5	10.9	3.1	76	0.046011		
20161207T043801_	0.957645	20.53878	91.54816	135.13514	2.005619	2.57618106	62	4.25	2.38	73	0.196181		
20161231T043800_	0.90657	17.39849	90.55625	97.087379	1.610286	2.14131414	55.5	6.7	2.05	353	0.091314	ł	
20170124T043758_	0.962109	22.16477	96.76617	169.49153	2.341849	2.94603405	61	9.95	3.5	83	0.553966	5	
20170301T043758_	0.848465	40.2201	85.95551	101.0101	1.406476	1.91712355	104	9.35	2.09	92	0.172876	5	
20170313T043758_	0.910571	15.47803	67.16635	86.802224	1.62547	2.1580173	78.5	5.45	2.02	106	0.138017	,	
20170406T043759_	0.849394	17.78919	90.69869	121.95122	1.853485	2.40883369	61	8.8	2.135	90.5	0.273834	ł	
20170418T043759_	0.789169	18.64423	94.28915	125	1.684169	2.22258622	63	7.45	1.74	75	0.482586	5	
20170512T043800_	0.830928	13.55441	90.57873	101.0101	1.377407	1.88514715	80.5	8.1	1.875	68	0.010147	,	
20170524T043801_	0.853679	18.25362	92.89127	101.0101	1.503698	2.02406753	70	8.5	2.57	63.5	0.545932		
20170605T043802_	0.864833	18.55678	92.75911	120.48193	1.787317	2.33604877	45.5	8.15	1.925	88	0.411049		
20170629T043803_	0.890337	7.050044	95.90614	114.94253	1.679457	2.21740304	75	8.15	2.295	81	0.077597	,	
20170711T043804_	0.773549	19.75932	90.52086	90.909091	1.132853	1.61613832	59.5	6.65	1.675	79.5	0.058862	1	
20170723T043804_	0.901249	24.13868	92.60256	151.51515	1.800684	2.35075191	75	5.7	2.395	82.5	0.044248	:	
20170816T043806_	0.829031	22.96289	96.07634	107.52688	1.235696	1.72926515	79	7.65	2.1	95	0.370735		
20170921T043807_	0.913726	18.10003	95.71059	125	2.008616	2.57947787	60	8.1	2.19	71	0.389478	:	
20171015T043808_	0.829466	14.45828	94.03771	117.64706	1.60145	2.13159496	68	8.5	2.09	79	0.041595		
20171202T043807_	0.899607	21.83215	90.74406	129.87013	1.703396	2.24373528	65	8.8	2.76	350	0.516265		
20171226T043806_	0.8544	27.07289	93.62148	126.58228	1.271597	1.76875719	102	7.2	1.93	61	0.161243		
20170424T043717_	0.855724	15.24808	93.99091	116.27907	2.077163	2.65487881	72	10	2.41	98	0.244879		
20170506T043718_	0.842172	15.65585	92.33731	102.04082	1.747222	2.29194444	69	8.7	2.36	85	0.068056	5	
20170518T043719_	0.895909	24.53152	96.05419	151.51515	1.76135	2.30748478	81	9.4	2.72	80	0.412515		
20170705T043721_	0.8964	15.20925	91.33222	116.27907	2.181453	2.76959846	65	10	2.42	84	0.349598	:	
20170729T043723_	0.85764	30.73492	92.72631	158.73016	1.409881	1.92086858	39	9	1.84	88	0.080869	NDBC	51002
20170810T043723_	0.784609	14.10786	101.5601	113.63636	1.463203	1.97952327	73	8	1.65	124	0.329523		
20170903T043724_	0.842839	27.0111	96.66666	129.87013	1.289917	1.78890862	58	5.4	1.83	173	0.041091	MAX	0.638203
20171021T043726_	0.940383	7.975539	90.7639	133.33333	2.057678	2.63344608	61	8.7	3.08	66	0.446554	STD	0.193136
20171126T043725_	0.904022	18.88573	91.86768	108.69565	1.656179	2.1917973	63	10.9	2.83	60	0.638203	MEAN	0.256901

Red : High Wind Blue: Low- Med Wind

All Data

Discussion

Research Objective

- 1. Evaluating semi-empirical update of significant wave height (Hs) estimation applied to Sentinel-1 SAR repository for narrow-band swell-wave spectrum on the open-ocean waters **without prior knowledge or external inputs.**
- 2. Evaluate the dependency between *Hs* and local environment (wind forcing, wave type, SAR system limitation, and imaging mechanism)

Answering our objective, our preliminary findings are as follow :

- The surface roughness and slope variation parameters update shown consistent result The wavelength (m) grows longer, standard deviation (dB) grows bigger, and The slope (dB/ radians) is relatively steeper with increasing Hs. Some of the result fails this common pattern due to the high wind speed (> 10 ms-1) or wind wave dominant sea.
- Results show that the proposed method performs well in estimating Hs in the low to moderate wind forcing conditions (4 10ms-1) under any wave type in open-water areas. Lower performances are shown in strong wind conditions, and wind wave dominant environment.
- 3. Two dimensional median filter (with 5x5 pixels kernel size) in spatial domain and two dimensional Gaussian filter (0.0001 wavenumber/ 1km wavelength) in frequency domain are sufficient to remove outlier or noise which resulting more consistent result between varying scenes