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Langfang field work

Study site

Observations

Leaf scale Canopy scale

Disease severity Disease index (DI)

Spectral reflectance Spectral reflectance

Imaging spectra Canopy photos

Chlorophyll Fluorescence

Nitrogen balance index Leaf area index

Anthocyanin

Leaf water content

Measurements

Filed work photo



Ningqiang investigation

Experimental site: Ningqiang county, Hanzhong, Shaanxi province 
(118°35‘19.51“E, 37°35'51.75“N)

ASD hyperspectral curves

LAI-2200 measurementsSPAD-values
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Pathogen

PlantEnvironment

Pathology

Plant diseases:

Causes: • Biological infections
• Habitat conditions
• Host

Effects: • Physiological functions
• Cellular structures
• Morphology

Applications: • Plant growth --- growth monitoring
• Yield losses --- loss assessment
• Diseases habitat condition --- habitat mapping



Symptom

Internal symptom External symptom

• Discoloration

• Necrosis

• Rot

• Wilting

• Abnormality

• Mildew

• Powder

• Particulate matter

• Rust

• Pus



The progressive development of yellow
rust

Rust infestation progress 

Hyperspectral changes of rust development

Biophysical changes

• The interaction of electromagnetic radiation with

plant leaves is governed by their biophysical

constituents and response to infestations

• The foliar biophysical variations are critical

indicators for tracking the progression of host–

pathogen interactions through the different stages

• The development of rust infestation is a

complicated process, which is hard to

characterize using the preexisting spectral

features and methods



Continuous wavelet transformation (CWT)     

A set of wavelet-based rust sensitive features

can be characterized by the wavelet coefficients

which can be expressed mathematically as:

where f is the original spectrum, n is the

number of bands. and ψ is a mother wavelet

function:



Wavelet features
Wavelength 

(nm)
Scale

WF01 486 5

WF02 545 2

WF03 571 2

WF04 685 4

WF05 746 4

The intersection of wavelet features selected

from the top 5% of the correlation scalograms

from the ASD and Headwall dataset is

summarized, a total of 5 feature regions are

extracted in blue edge (470 – 485 nm), green

peak (520 – 600 nm), and red edge (630 – 760

nm) regions at scales of 2 to 5.

WRSFs:



Correlation analysis

• For the WF01, a significant correlation is

observed with the PDM (R2=0.82),

• The biophysical attributes for the WF02 and

WF03 are similar, with R2 values of 0.77 and

0.79 for CHL, 0.68 and 0.74 for ANTH,

• For the WF04, a great correlation with NBI and

PDM are identified, with R2 value of 0.71 and

0.72

• The correlation between NBI and WF05 is

regarded as statistically significant



Retrieving PLS models     

Dai Feature PLS-based model equations R2 RMSE

7th

WRSFs
DR=0.035-159.45WF01-384.74WF02-60.58WF03

-27.95WF04-65.6WF05
0.78 0.052

VIs
DR=-0.054-0.06MSR+0.023PRI+0.136SIPI+0.026NPCI

-0.004ARI-0.023YRI
0.65 0.065

14th

WRSFs
DR=0.16+48.13WF01+220.41WF02-69.34WF03

-103.6WF04-39.68WF05
0.81 0.045

VIs
DR=-1.06-0.04MSR+0.56PRI+0.91SIPI+0.2NPCI

+0.04ARI-0.49YRI
0.69 0.068

21st

WRSFs
DR=-0.57-102.29WF01-47.77WF02+25.85WF03

-21.65WF04-8.6WF05
0.84 0.052

VIs
DR=-0.937-0.012MSR+0.096PRI+0.38SIPI+0.078NPCI

-0.126ARI-0.049YRI
0.75 0.075

28th

WRSFs
DR=-0.12-23.29WF01+32.98WF02+48.28WF03

+33.42WF04-9.27WF05
0.86 0.028

VIs
DR=-0.089-0.018MSR+0.037PRI+0.45SIPI+0.073NPCI

-0.015ARI+0.014YRI
0.73 0.037

31st

WRSFs
DR=-0.07-17.3WF01+82.49WF02-5.02WF03

-44.28WF04-12.39WF05
0.91 0.019

VIs
DR=-0.091-0.027MSR+0.125PRI+0.41SIPI+0.102NPCI

-0.071ARI-0.085YRI
0.81 0.025

34th

WRSFs
DR=-0.43-21.4WF01+20.1WF02+50.57WF03

+35.54WF04-14.12WF05
0.93 0.019

VIs
DR=-0.125-0.029MSR+0.19PRI+0.646SIPI+0.131NPCI

-0.12ARI-0.047YRI
0.85 0.028

41st

WRSFs
DR=-0.26-18.46WF01-5.26WF02+10.84WF03

-24.4WF04-15.31WF05
0.89 0.029

VIs
DRdisease=-0.2-

0.037MSR+0.085PRI+0.938SIPI+0.152NPCI
-0.24ARI-0.016YRI

0.82 0.031

For comparison, A total of 9 hyperspectral

VIs were selected to compare with the

extracted WRSFs for disease detection:

modified simple ratio (MSR); structural

independent pigment index (SIPI),

normalized pigment chlorophyll index

(NPCI), antho-cyanin reflectance index

(ARI), and modified chlorophyll absor-

ption reflectance index (MCARI) ratio

vegetation structure index (RVSI);

photosynthetic radiation index (PRI),

physiological reflectance index (PHRI);

yellow rust index (YRI),



Featu

re
State

Classification accuracy / %

7 dai 14 dai 21 dai 28 dai 31 dai 34 dai 41 dai

WFs

Health 88.7 92.4 97.5 99.2 98.8 96.7 98.9

Diseas

e
84.2 90.1 95.3 97.9 100 100 98.2

VIs

Health 73.5 81.2 88.6 95.4 96.9 95.2 96.1

Diseas

e
80.5 84.8 79.8 92.7 98.2 98.4 98.5

Before the evident strip-shaped amber

uredinium become visible (7th – 21st dai), the

diseased portions of yellow rust were

correctly classified by WRSFs-based SVM

with an accuracy range from 84.2% to 95.2%,

higher than that of VIs-based SVM with

accuracy range of 79.8% to 84.8%. After the

first symptoms occurred at 21st dai, the

classification accuracy steadily increased

owing to the high spatial resolution obtained

by the hyperspectral images. After the 20 day,

the classification accuracy was almost

consistent to or higher than the visual

identification on rust infected leaves.

Extraction of rust diseased area produced by WYSFs-based SVM

Yellow rust dynamic monitoring
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Sentinel-2 data

Spectral Band
Centre Wavelength 

(nm)

Spatial Resolution 

(nm)

B1 Coastal aerosol 443 60

B2 Blue (B) 490 10

B3 Green (G) 1 560 10

B4 Red (R) 1 665 10

B5 Red-edge 1 (Re1) 1 705 20

B6 Red-edge 2 (Re2) 1 740 20

B7 Red-edge 3 (Re3) 1 783 20

B8 Near infrared (NIR) 1 842 10

B8a
Near infrared narrow 

(NIRn) 1
865 20

B9 Water vapor 945 60

B1

0
Shortwave infrared/Cirrus 1380 60

B1

1

Shortwave infrared 

1(SWIR1)
1910 20

B1

2

Shortwave infrared 

2(SWIR2)
2190 20

March 28, 2018

May 12, 2018



⚫ Pathologically, the progressive development

between the various disease infestations are

different, although these infestations may lead

to similar external symptoms.

Definition Sensitive to

Normalized difference 

vegetation index, NDVI
Green biomass

Soil-adjusted vegetation index, 

SAVI
Canopy structure

Triangular vegetation index, 

TVI

Radiant absorption of 

chlorophyll

Re-normalize difference 

vegetation index, RDVI
Vegetation coverage

Modified Simple Ratio, MSR Leaf area, Biomass

Structural Independent 

Pigment Index, SIPI
Pigments content

⚫ Considering the potential pathological impact

of disease infestations mentioned above, six

vegetation indices (VIs) that related to plant

growth, vegetation coverage, and radiant

absorption of pigments were selected.

Normalized Two-Stage Vegetation Indices：

Feature selection 



⚫ For the diseased rice, the responses of the newly proposed normalized two-stage vegetation

indices were strongly associated with the individual pathological progress of different diseases.

⚫ For healthy rice, the normalized two-stage vegetation indices revealed greater differences with the

rice infested with disease compared to corresponding single-date VIs from the images on 30

October



Support vector machine:

• In the SVM classification frame, the optimal margin

would be outputted by maximizes the distance between

the hyperplane and the nearest points of both classes,

and then achieves the best prediction for unlabeled

points

• The separation decided by a kernel function reflects

the merits of the components and structure of input

feature space, because the kernel function comprises

an implicit mapping of samples in order to

characterizing the input feature space.



Predicted Class
Healthy 

Rice

Rice 

Dwarf

Rice 

Blast

Glume 

Blight

User’s 

Accuracy (%)

Overall 

Accuracy (%)

Kappa 

Coefficient

Normalized two-stage 

VIs

Healthy rice 54 0 6 2 87.1

75.62 0.47
Rice dwarf 4 60 5 9 76.92

Rice blast 11 4 48 5 70.59

Glume blight 5 8 2 27 64.29

Producer’s accuracy 

(%)
72.97 83.33 78.69 62.79

single-date VIs

Healthy rice 47 3 8 4 75.81

61.67 0.27
Rice dwarf 8 48 5 17 61.54

Rice blast 16 6 39 7 57.35

Glume blight 7 11 4 20 47.62

Producer’s accuracy 

(%)
60.26 70.59 69.64 41.67

Single-date model

Normalized two-stage model
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Rust detection and 

classification

1 Evaluate the robustness of the proposed

spectral features of yellow rust by using the

historical hyper-spectral data

Evaluations

2 Optimize the parameters of the developed 

classifiers of rust infestation, and generalize  

their applications 

Calibration

3 Develop a novel vegetation index based on 

the broad bands of new launched satellites for 

direct detection of rust infestation 

Novel descriptor

4 Utiize our achievements on the new launched 

satellites for guiding the crop management.

Regional applications


