

ESA-MOST Dragon Cooperation 中国科技部-欧洲空间局"龙计划"合作

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM 2018年"龙计划"四期中期成果国际学术研讨会

FRI. 21 JUNE 2018 DRAGON 4 ID. 32275 PROJECT

A NOVEL SPECTRAL FEATURE SET FOR TRACING PROGRESSIVE HOST-PATHOGEN INTERACTION OF YELLOW RUST ON WHEAT IN HYPERSPECTRAL- AND MULTISPECTRAL- IMAGES

YUE SHI, WENJIANG HUANG GIOVANNI LANEVE, STEFANO PIGNATTI, RAFFAELE CASA, QIONG ZHENG, HUIQIN MA, LINYI LIU

19-22 June 2018 | Xi'an, P.R. China 2018年6月19日-22日, 中国 西安

Satellite based diseases mapping

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM

19-22 June 2018 | Xi'an, P.R. China

Satellite based diseases mapping

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM

19-22 June 2018 | Xi'an, P.R. China

Langfang field work

Filed work photo

Leaf scale	Canopy scale
Disease severity	Disease index (DI)
Spectral reflectance	Spectral reflectance
Imaging spectra	Canopy photos
Chlorophyll	Fluorescence
Nitrogen balance index	Leaf area index
Anthocyanin	
Leaf water content	
Measure	ments

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM

19-22 June 2018 | Xi'an, P.R. China

Study site

Experimental site: Ningqiang county, Hanzhong, Shaanxi province (118°35'19.51"E, 37°35'51.75"N)

ASD hyperspectral curves

LAI-2200 measurements

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM 19–22 June 2018 | Xi'an, P.R. China

Satellite based diseases mapping

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM

19-22 June 2018 | Xi'an, P.R. China

Plant diseases:

- Causes: Biological infections
 - Habitat conditions
 - Host
- Effects: Physiological functions
 - Cellular structures
 - Morphology

- Pathogen Pathology Environment Plant
- Applications: Plant growth --- growth monitoring
 - Yield losses --- loss assessment
 - Diseases habitat condition --- habitat mapping

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM 19–22 June 2018 | Xi'an, P.R. China

Symptom

Internal symptom

- Discoloration Wi
- Wilting
- Necrosis
 Abnormality
- Rot

External symptom

- Mildew Rust
- Powder Pus
- Particulate matter

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM 19-22 June 2018 | Xi'an, P.R. China

The progressive development of yellow rust

- The interaction of electromagnetic radiation with plant leaves is governed by their biophysical constituents and response to infestations
- The foliar biophysical variations are critical indicators for tracking the progression of host– pathogen interactions through the different stages
- The development of rust infestation is a complicated process, which is hard to characterize using the preexisting spectral features and methods

Hyperspectral changes of rust development

Biophysical changes

2018年"龙计划"四期中期成果国际学术研讨会 2018年6月19日-22日,中国西安

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM 19–22 June 2018 | Xi'an, P.R. China

Continuous wavelet transformation (CWT)

A set of wavelet-based rust sensitive features can be characterized by the wavelet coefficients which can be expressed mathematically as:

 $W_f(\mathbf{a},\mathbf{b}) = \int_{-\infty}^{+\infty} f(\lambda)\psi_{a,b}(\lambda)d\lambda$

where f is the original spectrum, n is the number of bands. and ψ is a mother wavelet function:

$$\psi_{a,b}(\lambda) = \frac{1}{\sqrt{a}}\psi(\frac{\lambda-b}{a})$$

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM 19–22 June 2018 | Xi'an, P.R. China

WRSFs:

The intersection of wavelet features selected from the top 5% of the correlation scalograms from the ASD and Headwall dataset is summarized, a total of 5 feature regions are extracted in blue edge (470 - 485 nm), green peak (520 - 600 nm), and red edge (630 - 760nm) regions at scales of 2 to 5.

Wavelet features	Wavelength (nm)	Scale	
WF01	486	5	
WF02	545	2	
WF03	571	2	
WF04	685	4	
WF05	746	4	

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM

19-22 June 2018 | Xi'an, P.R. China

Correlation analysis

- For the WF01, a significant correlation is observed with the PDM ($R^2=0.82$),
- The biophysical attributes for the WF02 and WF03 are similar, with R2 values of 0.77 and 0.79 for CHL, 0.68 and 0.74 for ANTH,
- For the WF04, a great correlation with NBI and PDM are identified, with R2 value of 0.71 and 0.72
- The correlation between NBI and WF05 is regarded as statistically significant

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM

19-22 June 2018 | Xi'an, P.R. China

Retrieving PLS models

For comparison, A total of 9 hyperspectral VIs were selected to compare with the extracted WRSFs for disease detection: modified simple ratio (MSR); structural independent pigment index (SIPI), normalized pigment chlorophyll index (NPCI), antho-cyanin reflectance index (ARI), and modified chlorophyll absorption reflectance index (MCARI) ratio vegetation structure index (*RVSI*); photosynthetic radiation index (*PRI*), physiological reflectance index (*PHRI*); yellow rust index (YRI),

Dai	Feature	PLS-based model equations	R2	RMSE
	WRSFs	DR=0.035-159.45WF01-384.74WF02-60.58WF03 -27.95WF04-65.6WF05	0.78	0.052
7th	VIs	DR=-0.054-0.06MSR+0.023PRI+0.136SIPI+0.026NPCI -0.004ARI-0.023YRI	0.65	0.065
	WRSFs	DR=0.16+48.13WF01+220.41WF02-69.34WF03 -103.6WF04-39.68WF05	0.81	0.045
14th	VIs	DR=-1.06-0.04MSR+0.56PRI+0.91SIPI+0.2NPCI +0.04ARI-0.49YRI	0.69	0.068
	WRSFs	DR=-0.57-102.29WF01-47.77WF02+25.85WF03 -21.65WF04-8.6WF05	0.84	0.052
21st	VIs	DR=-0.937-0.012MSR+0.096PRI+0.38SIPI+0.078NPCI -0.126ARI-0.049YRI	0.75	0.075
	WRSFs	DR=-0.12-23.29WF01+32.98WF02+48.28WF03 +33.42WF04-9.27WF05	0.86	0.028
28th	VIs	DR=-0.089-0.018MSR+0.037PRI+0.45SIPI+0.073NPCI -0.015ARI+0.014YRI	0.73	0.037
	WRSFs	DR=-0.07-17.3WF01+82.49WF02-5.02WF03 -44.28WF04-12.39WF05	0.91	0.019
31st	VIs	DR=-0.091-0.027MSR+0.125PRI+0.41SIPI+0.102NPCI -0.071ARI-0.085YRI	0.81	0.025
	WRSFs	DR=-0.43-21.4WF01+20.1WF02+50.57WF03 +35.54WF04-14.12WF05	0.93	0.019
34th	VIs	DR=-0.125-0.029MSR+0.19PRI+0.646SIPI+0.131NPCI -0.12ARI-0.047YRI	0.85	0.028
	WRSFs	DR=-0.26-18.46WF01-5.26WF02+10.84WF03 -24.4WF04-15.31WF05	0.89	0.029
41st	VIs	DRdisease=-0.2- 0.037MSR+0.085PRI+0.938SIPI+0.152NPCI -0.24ARI-0.016YRI	0.82	0.031
IUM	2	2018年"龙计划"四期中期成果国际学	术研	讨会
-		2018年6月19日-22日	1, 中国	西安

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM 19-22 June 2018 | Xi'an, P.R. China

Yellow rust dynamic monitoring

Before the evident strip-shaped amber uredinium become visible $(7^{\text{th}} - 21^{\text{st}} \text{ dai})$, the diseased portions of yellow rust were correctly classified by WRSFs-based SVM with an accuracy range from 84.2% to 95.2%, higher than that of VIs-based SVM with accuracy range of 79.8% to 84.8%. After the first symptoms occurred at 21st dai, the classification accuracy *steadily increased* owing to the high spatial resolution obtained by the hyperspectral images. After the 20 day, the classification accuracy was almost consistent to or higher than the visual identification on rust infected leaves.

Extraction of rust diseased area produced by WYSFs-based SVM

Featu	State	Classification accuracy / %						
re	State	7 dai	14 dai	21 dai	28 dai	31 dai	34 dai	41 dai
	Health	88.7	92.4	97.5	99.2	98.8	96.7	98.9
WFs	Diseas e	84.2	90.1	95.3	97.9	100	100	98.2
	Health	73.5	81.2	88.6	95.4	96.9	95.2	96.1
VIs	Diseas e	80.5	84.8	79.8	92.7	98.2	98.4	98.5

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM 19–22 June 2018 | Xi'an, P.R. China

Hyperspectral based disease detection

Satellite based diseases mapping

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM

19-22 June 2018 | Xi'an, P.R. China

Sentinel-2 data

	Spectral Band	Centre Wavelength	Spatial Resolution
	Spectral Band	(nm)	(nm)
B1	Coastal aerosol	443	60
B2	Blue (B)	490	10
B3	Green (G) ¹	560	10
B4	Red (R) ¹	665	10
B5	Red-edge 1 (Re1) 1	705	20
B6	Red-edge 2 (Re2) 1	740	20
B7	Red-edge 3 (Re3) 1	783	20
B8	Near infrared (NIR) 1	842	10
DQ-	Near infrared narrow	96E	20
DOd	(NIRn) ¹	600	20
B9	Water vapor	945	60
B1		1200	60
0	Shortwave infrared/Cirrus	1380	60
B1	Shortwave infrared	1010	20
1	1(SWIR1)	1910	20
B1	Shortwave infrared	2100	20
2	2(SWIR2)	2190	20

esa March 28, 2018 May 12, 2018

2018年"龙计划"四期中期成果国际学术研讨会 2018年6月19日-22日,中国 西安

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM 19–22 June 2018 | Xi'an, P.R. China

19-22 June 2018 | Xi'an, P.R. China

2018年"龙计划"四期中期成果国际学术研讨会 2018年6月19日-22日,中国西安

Normalized Two-Stage Vegetation Indices:

 $VI_{two-stage} = \frac{VI_{30October} - VI_{21August}}{VI_{1000} + VI_{21August}}$

• Considering the potential pathological impact of disease infestations mentioned above, six vegetation indices (VIs) that related to plant growth, vegetation coverage, and radiant absorption of pigments were selected.

Pathologically, the progressive development between the various disease infestations are different, although these infestations may lead to similar external symptoms.

Feature selection

2			
	Inc	rr	
	IHS	LL	
-			

Definition	Sensitive to
Normalized difference vegetation index, NDVI	Green biomass
Soil-adjusted vegetation index, SAVI	Canopy structure
Triangular vegetation index, TVI	Radiant absorption of chlorophyll
Re-normalize difference vegetation index, RDVI	Vegetation coverage
Modified Simple Ratio, MSR	Leaf area, Biomass
Structural Independent	Pigments content

四期中期成果国际学术研讨会

2018年6月19日-22日, 中国 西安

- For healthy rice, the normalized two-stage vegetation indices revealed greater differences with the rice infested with disease compared to corresponding single-date VIs from the images on 30 October
- For the diseased rice, the responses of the newly proposed normalized two-stage vegetation indices were strongly associated with the individual pathological progress of different diseases.

2018年

"龙计划"

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM

19-22 June 2018 | Xi'an, P.R. China

Support vector machine:

- In the SVM classification frame, the optimal margin would be outputted by *maximizes the distance* between the *hyperplane* and the *nearest points of both classes*, and then achieves the best prediction for unlabeled points
- The separation decided by a kernel function reflects the merits of the components and structure of input feature space, because the kernel function comprises an implicit mapping of samples in order to characterizing the input feature space.

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM 19–22 June 2018 | Xi'an, P.R. China

Predicted Class	Healthy Rice	Rice Dwarf	Rice Blast	Glume Blight	User's Accuracy (%)	Overall Accuracy (%)	Kappa Coefficient
Normalized two-stage VIs							
Healthy rice	54	0	6	2	87.1		0.47
Rice dwarf	4	60	5	9	76.92	75.00	
Rice blast	11	4	48	5	70.59	75.62	
Glume blight	5	8	2	27	64.29		
Producer's accuracy (%)	72.97	83.33	78.69	62.79			
single-date VIs							
Healthy rice	47	3	8	4	75.81		0.27
Rice dwarf	8	48	5	17	61.54	04.07	
Rice blast	16	6	39	7	57.35	61.67	
Glume blight	7	11	4	20	47.62		
Producer's accuracy (%)	60.26	70.59	69.64	41.67			

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM

19-22 June 2018 | Xi'an, P.R. China

Satellite based diseases mapping

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM

19-22 June 2018 | Xi'an, P.R. China

Evaluations

Evaluate the robustness of the proposed spectral features of yellow rust by using the historical hyper-spectral data

Calibration

Optimize the parameters of the developed classifiers of rust infestation, and generalize their applications

Novel descriptor

Develop a novel vegetation index based on the broad bands of new launched satellites for direct detection of rust infestation

Regional applications

Utiize our achievements on the new launched satellites for guiding the crop management.

2018 DRAGON 4 MID-TERM RESULTS SYMPOSIUM

19-22 June 2018 | Xi'an, P.R. China

2018年"龙计划"四期中期成果国际学术研讨会 2018年6月19日-22日,中国 西安

Ð

Rust detection and classification

3