Urban Extraction Using Sentinel-1 SAR & Sentinel-2 MSI Dense Time Series with Google Earth Engine

Yifang Ban, Nascetti Andrea, Kakooei Mohammad

Division of Geoinformatics
KTH Royal Institute of Technology
Stockholm, Sweden
Where do we stand on Earth Observation?

- Thanks to the fast growth of satellite technology we are moving forward into a new era of Earth Observation Big Data.
- Both National and International space agencies and innovative companies are supporting various EO programs acquiring huge amounts of data every day.
Earth Observation Big Data: Opportunities & Challenges

- **Opportunities**
 - Near-real time monitoring of phenomena affecting built and natural environment
 - Dense time series for analysis of global environmental changes
 - New possibility to deploy operational and reliable services

- **Challenges**
 - Exploit innovative computing infrastructure to handle, store and process the data
 - ESA Thematic Exploitation Platform
 - Copernicus Data and Information Access Services (DIAS)
 - Google Earth Engine
 - Develop new methods and algorithms to extract valuable information combining different sensors (i.e. Sentinels 1 & 2) and products (i.e. DSMs, Land Cover Maps)
 - Integrate the analysis of the EO imagery with other geospatial big data (i.e. social media, ground sensors (i.e. GNSS), crowdsourced data)
Research Objectives

- **Why Urban Mapping?**
 - Today, 54% of the world’s population lives in urban areas.
 - By 2050, the world is expected to add an additional 2.5 billion urban dwellers.
 - Nearly 90 percent of the increase is concentrated in Asia and Africa.
 - Urbanization has a significant impact on the environment.

- **The objective** is to evaluate Sentinel-1 SAR and Sentinel-2 MSI dense time series for developing a global approach to continuously extract urban footprints to support smart and sustainable urban development.

- Follow-up of the EO4Urban Project Funded by the European Space Agency
Existing Urban Dataset:

- **DLR Global Urban Footprints (GUF):**
 - Global coverage derived from TerraSAR-X data (90% of the data acquired in 2011-2012)

- **JRC Global Human Settlement Layer (GHSL):**

- **JRC GHS Built-Up:**
 - Global coverage derived from Sentinel-1 data (2016 beta version)

- **Urban Layer in GlobeLand30:**
 - Global coverage derived from Landsat data

- **Atlas of Urban Expansion (NYU):**
 - 200 cities global, derived from Landsat data
Google Earth Engine (GEE) is a computing platform released by Google “for petabyte-scale scientific analysis and visualization of geospatial datasets”:

- GEE enables researchers to access geospatial information and satellite imagery, for global and large scale remote sensing applications (over than two petabytes of geospatial data)

- GEE can be used to perform geospatial analysis, exploiting a dedicated HPC infrastructure, also running user-developed software through the GEE API
We developed a GEE App to compute the Urban Footprint using S1 & S2

- Totally automatic workflow
- Selection of the AOI and the sensing period (i.e. Jan 2016 to June 2016)
- Fast processing exploiting the GEE potentialities (around 5/10 minutes for a city)
- Combine use of Sentinel-1 SAR and Sentinel-2 MSI data
- Free and open source software (first release expected June 2019)
We applied the method on subsequent periods with a time span between 6-12 months.

We automatically generate consistent urban footprint time series.
Validation Dataset

- Six cities investigated characterized by different morphology, climate and terrain
- > 10000 of validation points for each city (acquired in the ESA EO4Urban project)
- Comparison with available global datasets:
 - DLF GUF - Global Urban Footprint TerraSAR-X data acquired between 2011-2012
 - JRC GHS (Global Human Settlement)
Accuracy Assessment Beijing

<table>
<thead>
<tr>
<th>Dataset (start date)</th>
<th>Producers Accuracy (%)</th>
<th>Users Accuracy (%)</th>
<th>Overall Accuracy (%)</th>
<th>Kappa Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEE 2016-01-01</td>
<td>99.20</td>
<td>91.48</td>
<td>94.974</td>
<td>0.900</td>
</tr>
<tr>
<td>GEE 2016-04-01</td>
<td>99.06</td>
<td>90.84</td>
<td>94.527</td>
<td>0.891</td>
</tr>
<tr>
<td>GEE 2016-07-01</td>
<td>99.24</td>
<td>90.12</td>
<td>94.175</td>
<td>0.884</td>
</tr>
<tr>
<td>GEE 2016-10-01</td>
<td>99.17</td>
<td>91.28</td>
<td>94.844</td>
<td>0.897</td>
</tr>
<tr>
<td>GEE 2017-01-01</td>
<td>99.08</td>
<td>91.10</td>
<td>94.693</td>
<td>0.894</td>
</tr>
<tr>
<td>GEE 2017-04-01</td>
<td>99.05</td>
<td>90.82</td>
<td>94.512</td>
<td>0.890</td>
</tr>
<tr>
<td>GEE 2017-07-01</td>
<td>98.76</td>
<td>90.15</td>
<td>93.984</td>
<td>0.880</td>
</tr>
</tbody>
</table>

GEE 2016-01-01
GEE 2016-04-01
GEE 2016-07-01
GEE 2016-10-01
GEE 2017-01-01
GEE 2017-04-01
GEE 2017-07-01

Kappa Coefficient

*2019 DRAGON 4 SYMPOSIUM
24–28 June 2019 | Ljubljana, Slovenia*
Beijing Results
Beijing Results: Issues

KTH GEE UE results 2017

GUF results (2011-2012)
Beijing Results: Changes

KTH GEE UE results 2017

GUF results (2011-2012)
Accuracy Assessment Stockholm

<table>
<thead>
<tr>
<th>Dataset (start date)</th>
<th>Producers Accuracy (%)</th>
<th>Users Accuracy (%)</th>
<th>Overall Accuracy (%)</th>
<th>Kappa Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLR GUF</td>
<td>74.47</td>
<td>98.63</td>
<td>86.795</td>
<td>74.47</td>
</tr>
<tr>
<td>JRC GHS</td>
<td>93.02</td>
<td>91.95</td>
<td>92.481</td>
<td>93.02</td>
</tr>
<tr>
<td>GEE 2016-01-01</td>
<td>96.65</td>
<td>92.65</td>
<td>94.521</td>
<td>96.65</td>
</tr>
<tr>
<td>GEE 2016-04-01</td>
<td>96.75</td>
<td>92.76</td>
<td>94.629</td>
<td>96.75</td>
</tr>
<tr>
<td>GEE 2016-07-01</td>
<td>97.20</td>
<td>92.74</td>
<td>94.826</td>
<td>97.20</td>
</tr>
<tr>
<td>GEE 2016-10-01</td>
<td>91.77</td>
<td>92.82</td>
<td>92.382</td>
<td>91.77</td>
</tr>
<tr>
<td>GEE 2017-01-01</td>
<td>91.67</td>
<td>91.78</td>
<td>91.781</td>
<td>91.67</td>
</tr>
<tr>
<td>GEE 2017-04-01</td>
<td>91.85</td>
<td>91.83</td>
<td>91.889</td>
<td>91.85</td>
</tr>
<tr>
<td>GEE 2017-07-01</td>
<td>89.93</td>
<td>92.59</td>
<td>91.416</td>
<td>89.93</td>
</tr>
</tbody>
</table>

![Kappa Coefficient Graph](chart.png)
Stockholm Results
Stockholm Results

KTH GEE UE results 2016

GUF results (2011-2012)
Stockholm Results: Urban Changes

KTH GEE UE results 2017

GUF results (2011-2012)
Accuracy Assessment Milano

<table>
<thead>
<tr>
<th>Dataset (start date)</th>
<th>Producers Accuracy (%)</th>
<th>Users Accuracy (%)</th>
<th>Overall Accuracy (%)</th>
<th>Kappa Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLR GUF</td>
<td>84.41</td>
<td>95.07</td>
<td>89.791</td>
<td>0.796</td>
</tr>
<tr>
<td>JRC GHS</td>
<td>70.41</td>
<td>87.43</td>
<td>80.146</td>
<td>0.603</td>
</tr>
<tr>
<td>GEE 2016-01-01</td>
<td>98.92</td>
<td>97.59</td>
<td>98.240</td>
<td>0.960</td>
</tr>
<tr>
<td>GEE 2016-04-01</td>
<td>99.18</td>
<td>97.46</td>
<td>98.300</td>
<td>0.966</td>
</tr>
<tr>
<td>GEE 2016-07-01</td>
<td>99.18</td>
<td>97.33</td>
<td>98.230</td>
<td>0.965</td>
</tr>
<tr>
<td>GEE 2016-10-01</td>
<td>99.14</td>
<td>97.41</td>
<td>98.250</td>
<td>0.965</td>
</tr>
<tr>
<td>GEE 2017-01-01</td>
<td>99.22</td>
<td>97.35</td>
<td>98.260</td>
<td>0.965</td>
</tr>
<tr>
<td>GEE 2017-04-01</td>
<td>99.26</td>
<td>97.20</td>
<td>98.200</td>
<td>0.964</td>
</tr>
<tr>
<td>GEE 2017-07-01</td>
<td>99.16</td>
<td>97.46</td>
<td>98.290</td>
<td>0.966</td>
</tr>
</tbody>
</table>
Accuracy Assessment New York

<table>
<thead>
<tr>
<th>Dataset (start date)</th>
<th>Producers Accuracy (%)</th>
<th>Users Accuracy (%)</th>
<th>Overall Accuracy (%)</th>
<th>Kappa Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLR GUF</td>
<td>87.55</td>
<td>94.35</td>
<td>90.528</td>
<td>0.811</td>
</tr>
<tr>
<td>JRC GHS</td>
<td>93.14</td>
<td>87.17</td>
<td>88.987</td>
<td>0.778</td>
</tr>
<tr>
<td>GEE 2016-01-01</td>
<td>92.48</td>
<td>91.43</td>
<td>91.336</td>
<td>0.826</td>
</tr>
<tr>
<td>GEE 2016-04-01</td>
<td>92.50</td>
<td>91.49</td>
<td>91.378</td>
<td>0.827</td>
</tr>
<tr>
<td>GEE 2016-07-01</td>
<td>94.57</td>
<td>90.84</td>
<td>91.986</td>
<td>0.838</td>
</tr>
<tr>
<td>GEE 2016-10-01</td>
<td>93.68</td>
<td>91.42</td>
<td>91.911</td>
<td>0.837</td>
</tr>
<tr>
<td>GEE 2017-01-01</td>
<td>93.9</td>
<td>91.45</td>
<td>92.036</td>
<td>0.840</td>
</tr>
<tr>
<td>GEE 2017-04-01</td>
<td>93.92</td>
<td>91.4</td>
<td>92.011</td>
<td>0.839</td>
</tr>
<tr>
<td>GEE 2017-07-01</td>
<td>94.26</td>
<td>91.32</td>
<td>92.128</td>
<td>0.841</td>
</tr>
<tr>
<td>Dataset (start date)</td>
<td>Producers Accuracy (%)</td>
<td>Users Accuracy (%)</td>
<td>Overall Accuracy (%)</td>
<td>Kappa Coefficient</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>DLR GUF</td>
<td>78.72</td>
<td>96.57</td>
<td>87.873</td>
<td>0.758</td>
</tr>
<tr>
<td>JRC GHS</td>
<td>63.29</td>
<td>93.66</td>
<td>79.516</td>
<td>0.590</td>
</tr>
<tr>
<td>GEE 2016-01-01</td>
<td>99.14</td>
<td>85.75</td>
<td>91.269</td>
<td>0.825</td>
</tr>
<tr>
<td>GEE 2016-04-01</td>
<td>98.98</td>
<td>87.51</td>
<td>92.370</td>
<td>0.847</td>
</tr>
<tr>
<td>GEE 2016-07-01</td>
<td>98.92</td>
<td>90.67</td>
<td>94.325</td>
<td>0.886</td>
</tr>
<tr>
<td>GEE 2016-10-01</td>
<td>98.76</td>
<td>91.67</td>
<td>94.854</td>
<td>0.897</td>
</tr>
<tr>
<td>GEE 2017-01-01</td>
<td>98.58</td>
<td>92.17</td>
<td>95.067</td>
<td>0.901</td>
</tr>
<tr>
<td>GEE 2017-04-01</td>
<td>98.10</td>
<td>93.89</td>
<td>95.827</td>
<td>0.917</td>
</tr>
<tr>
<td>GEE 2017-07-01</td>
<td>97.75</td>
<td>94.37</td>
<td>95.929</td>
<td>0.919</td>
</tr>
</tbody>
</table>
Accuracy Assessment Mexico City

<table>
<thead>
<tr>
<th>Dataset (start date)</th>
<th>Producers Accuracy (%)</th>
<th>Users Accuracy (%)</th>
<th>Overall Accuracy (%)</th>
<th>Kappa Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLR GUF</td>
<td>80.70</td>
<td>98.70</td>
<td>89.819</td>
<td>0.796</td>
</tr>
<tr>
<td>JRC GHS</td>
<td>60.52</td>
<td>97.05</td>
<td>79.340</td>
<td>0.587</td>
</tr>
<tr>
<td>GEE 2016-01-01</td>
<td>93.77</td>
<td>90.16</td>
<td>92.083</td>
<td>0.842</td>
</tr>
<tr>
<td>GEE 2016-04-01</td>
<td>94.17</td>
<td>92.18</td>
<td>93.088</td>
<td>0.862</td>
</tr>
<tr>
<td>GEE 2016-07-01</td>
<td>95.40</td>
<td>90.71</td>
<td>92.813</td>
<td>0.856</td>
</tr>
<tr>
<td>GEE 2016-10-01</td>
<td>96.57</td>
<td>89.15</td>
<td>92.408</td>
<td>0.848</td>
</tr>
<tr>
<td>GEE 2017-01-01</td>
<td>97.19</td>
<td>87.41</td>
<td>91.593</td>
<td>0.832</td>
</tr>
<tr>
<td>GEE 2017-04-01</td>
<td>97.58</td>
<td>87.17</td>
<td>91.608</td>
<td>0.832</td>
</tr>
<tr>
<td>GEE 2017-07-01</td>
<td>97.53</td>
<td>87.49</td>
<td>91.793</td>
<td>0.836</td>
</tr>
</tbody>
</table>

![Kappa Coefficient Graph](image)
Conclusions & Future Prospects

The developed method is able to:

- achieved good results ($k > 80\%$) in the different tested cities
- exploiting the fusion of S1 & S2 data
- produce urban footprint time series exploiting the processing capabilities of GEE

Next steps:

- Applied the method for large scale urban mapping and improve the accuracy assessment using other reference data
- Investigate the generated urban footprint time series to track the changes and improve the overall accuracy