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Focus iIs on:
« Automated sea ice type mapping (ML, DL, ..)

e Feature extraction
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Automated sea ice type mapping
 to handle many data within short time
 to optimize processing schemes

 to reduce time-consuming human interference
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An intelligent system for SAR sea ice image
classification: a preliminary study (Xi)

 We have SAR backscattering
coefficients, texture and o i)f/
polarimetric parameters at /o
different radar frequencies and
polarizations

 We want to separate different ice
types and features for operational
ice charting and science studies

« Aim: create automated sea ice Aug 2011 Aug 2018
processing and classification Andreas Criferszky, 2018
systems

# of data points
per 25km?




Software development environment
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SAR data and process

« Sentinel-1 A/B GRD data is auto-
downloaded and pre-processed
using Python modules 'sentinelhub’
and ‘Nansat’ (@github)

« GF-3 datais access via ftp which is
provided from National Satellite
Ocean Application Service; the pre-
processed is done by a self-code.

Training data: ice chart
: . INSIDC| National Snow & Ice Data Center
« Arctic: CIS Arctic Sea Ice Charts N S
(SIGRID-3 Format, weekly)
« The Bohai sea: North China Sea
Marine Forecasting Center

(MODIS and GOCI-based)




Training data set

* Pre-training sets: only ice chart

 Training sets: SAR image which is labelled

based on ice chart.

* Only ice concentration > 70% in winter and
early spring is considered to use as pre - or

training data set.
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Learning
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2. Feature
Transfer
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3. SAR
classifier
learning

Pre-training set

Labelled
SAR

Training set

Architecture of the system

Transfer Learning + CNN

* Transfer learning: The system learns about
sea ice feature characteristics from ice
charts.

* CNN: inherits the knowledge from transfer
learning and knowledge from SAR training
set.

Convolutional Layers Fully Connected layers

Cl—C2—C3—C4—C5 mupp| F6 pupl F7 ey FC8 \
[ Transfer parameters ] Sea Ice
Types

Cl—C2—C3—C4—C5 mupp| F6 mep| F7 | Fc8a /

New adaptation layers trained



The input of Transfer Learning

Raster scan

- Area of the shapefile
Characteristic Perimeter of the shapefile
extracted from 1 Shape index of the shapefile
ice chart Contiguity index of the shapefile

- Distance to the nearest neighboring type
The input of CNN

The input of the CNN mode used requires 3 dimensional S
data

HH, HV and incidence angle.
The size of each image patch is 45 pixels * 45 pixels

The work in process

1. Optimize network parameters and network structure
2. Detailed assessment of classification performance ke
3. Analysis of results with or without pre-training

4. Parallel processing accelerates compute speed

Mew pixel value (destination pixel)



Preliminary classification results from Bohai Sea
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But: there are many fish(es) in the sea:

 Which segmentation / classification method is optimal?
(reliability/accuracy, robustness, computation time)
« How much input information (i.e. parameters derived

from SAR measurements) are needed?
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l-band RGB: Cross-HH-VV
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C-band RGB: Cross-VV-VV
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Support Vector Machine Support Vector Machine with Majority Filter 5x5
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@ﬂggg Different classification algorithms: results
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T Buchelt 2019, Internship Report

Majority Filtering

& FALSE
. & TRUE
MahD Mahalanobian Distance
MinD Minimum Distance
MLC Maximum Likelihood Classification
SVM Support Vector Machine
NN_R MNeural Network in R
SvM B RF_R Random Forest in R
SVM_R Support Vector Machine in R
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Optimal input data for classification

CSd

/lr

« depends on the available data

o difficulty to asess optimal choice grows with
Increasing number of parameters derived from
the measurements

e airborne systems versus satellite systems
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Feature extraction

e special information required (e.g. ridges,
Icebergs)
 only a fraction of the image content is of interest

« how can this fraction be separated from the rest?
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Extracting ridges from coarse resolution
SAR Images (Markku)

e Goal: extract ridging information from operational SAR data.

 SAR images: EW Sentinel-1 images (40 m pixel, 90 m spatial
resolution)

 Test sites: Baltic Sea, Kara Sea (future).

« Evaluation of results: using Radarsat-2 data combined with
HEM data collected during the winter 2010-2011.



Principles of the analysis

 Sign of the second derivative reveals if some location is a peak.

« 2-D directional filters which detect line fragments in different
orientations.

Oriented Filter (& = 30°)

* The theoretical foundation of the
approach is presented in N
Freeman and Adelson, X
The Design and Use of Steerable Filters,

IEEE PAMI,1991. /

o 0 10 15 20

N

17



S1 EW 11 March 2016

S1 (40m), 11 March 2016
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Comments

 The approach generates several false alarms with a great
likelihood .

 False ridge-like structures (e.g. brash ice channels created by
ships) are hard to identify.

e Due to the coarse resolution a large fraction of ridges remain
hidden.

* Which thresholds are optimal?



(@uccc  Iceberg detection in Sentinel-2 images
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Soldal et al.
Remote Sensing,
2019
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@vgggg Iceberg detection in Sentinel-1 EWS images

Soldal et al.
Remote Sensing,
2019

Also tested with
S1-IWS mode

—
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Iceberg detection

« some icebergs identified in optical images cannot

be seen in C-band SAR images!

o difficult detection in deformed ice and rough

waters
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Iceberg detection
 wide coverage required (== coarse resolution)

e Icebergs can be small: growlers < 5m, bergy bits
5-15m, small bergs 15-60m, ... (== high

resolution)
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So: what did we learn?

 For operational use we have to find the best
methods for ice mapping and feature extraction

e “Best” == criteria for selection?

« We know examples of good input parameters but
do yet not know the optimal choice(s)

« == this may reqguire to re-think strategies of data
acquisitions (multi-frequency, multi-resolution,...)
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So: what did we learn?

 Urgently required: reference / validation data
(mostly used until now: man-made ice charts)

 Possible scenario: (a) build-up of a free available
data set consisting of different SAR and
complementary data, (b) establishment of
necessary criteria for algorithm selection, (c)
multi-group approach to find the best algorithm
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